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By Richalas H. Van Dorn and J o h ~  DoYoung 

Three methods for ca lcu l r t ing  apm lo& dist r ibut ion,  thoso 
doveloped by B.M. Felkner, Wm. Mutbrperl, end J. Veissinga:; have 
been appl ied   to   f ive  m p t  wings. The m@os of m o p  rcngad frcan 
-45O t o  450. Tkseso r n c t h h  ware ox=minod 50 eetzblish their 
relative ~cu_recg  and easo of application. EqerimenkJly dotsmlned 
loadings wsre used a8 6 brsis for jud@n& accuracy. For tho 
convenionco of tho rezders the ccnaputhg fcmae m d  ul2. inf'olmction . 
requisite to thofr applicatfon m e  includod ir zppndixes. 

In m e f f o r t  to roach hfghor flight epocda, dosignere a m  
turning to widely divorsifiod types of' pl,m f o r m  tho ,zoroQnemic 
C h c L r E ? C k r i S t i C E  of which mf3 a8 yet tnknm. Sinco tho m"t ip1 ic i ty  
of such dasigns pracludos an oxporineqtd. invcstfgation of otch, 
considerablo  cttcntion has bcan dfroctod t o w d  mom16 017 obkin ing  thuse 
charaotaristlce theoretically. Usually the basis for such theo33tical 
investigations is span loading. Wh-Ile the precise span l o a d i w  
itself mey not be consTdered of major bqortance, It I s  believed 
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that  a.ny method giving resreonably eccwato  prodict ime of span 
loeding would be menablo t o  aimplo oxtons$ons which would givo 
reasonably accurato values of such. c h m a c h r i s t i c a  a.6 l i f t -curvo 
slope, spmwiso contor of pmssuro posftion, downwash at a rb i t r a ry  
locations, Etnd r o l l i n g  moments due to s ides l ip  or rolling. 

R nmbs-r of mothods ham boen dsvolopod for   predict ing tho 
span loading, of swopt wings of a r b i t m y  tapor and aspect r a t io ,  
but very fow attompte have beon mado to campam, for 8ovora.l moth6d8, 
pradlcted end oxporlmontaUy measured loadings on ident ical  wfnger. 
Tho invostigation  reported heroin was undortakon to provido such a 
compari8on of prodictad and m a e m d  apaa loadings. 'Ibo thctorotfcal 
mothods havo been evaluated in tams of rolativo accvxac,~, mumar 
and coneristoncy of omor,  and te&iou~~noss  of application. 

Tho mothode dovoloped by V .M. FdknltnOr (roferonco I), Wm. Muttorporl 
(ref orenco 2), and J. Woissingcr (roferonce 3)  havo been 8 p y l h d  t o  
f ivo .wfngs producod by amaping tho wlng panels of an afrplano through 
a rango of " 4 5 O  to -1-450 (rofcrencc 4) .  Tho span load distributions 
so calculated have boon campazed w i t h  tboso  obtainod cxprimontollg 
at the  timo of tho i n v e s t ~ g a t ~ o n  of reforonco 4. In  addition, tho 
lift-curre elopes and spanwise contor-of-prussuro p e l t i o n  prodictod 
for oach wing by tho sovaral methods have bscn canparod w i t n  thoso 
V ~ U O S  obtainod oxpsrImenklQ. 

Ffnally,  i n  order to enable inmediate appllcation of the metbcds, 
all mcesmry  tables, computation forms, and etep-by-sbp canpub- 
tiOn instructions f o r  each a m  included i n  t h e  appendixee. 1% i 8  
believed that with these aids a computing staff could undertake the 
computation of mgt-wing character is t ics  with l i t t l e  additional 
supervision. In addition, for the  convenience of the reader, there 
are included in the appendixes any matbematfcal derivation8 o r  
developments not frm;l8di&tely obtainable from the references. 
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SYMBOLS 

Gensrd 

wing area, square feet 

ef fec t ive1  wing span, fee t  

effective aspect ratto (P/s) 

semispan (b/2), feet 

wing chord, feet 

root chord, feet . 

average chord (S/b 1, fee t  

taper r a t i o ,  t i p  chord divided by root chord ( G ~ / c o )  

streep angle of qwter-chord line positive for eweepback, 
degrees 

gecmt r l c  angle of a t tack  of wing measured frcm m e  f o r  
zero lift, degrees 

geometric angle of a t teck  of wing root  Bection, degree8 

local geometric angle of attack, d e p e e  

longitu&bal  coordimts of &ownwash point poaitive 
forward, feet  

latel.al coordinate of dmwasb point positive to 
rfght, feet  

dimensionless lateral c0Crl-dinz-b of domwzmh 
Pofnt (,"/a) 

3 

lIn a l l  instances except the unewept KLng, the actual sfp chord was 
not parallel to the wind s h a m .  An erfective tip chord tbat 
was p a r s l l e l  w a ~  t he re fo re  asawned such thzt the wlng area 
remained cmetEtnt. The effective spen is the span t o  thie 
effective  t ip.  

A 
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P 

PO 

P 

Cp 

longitudinal coordinate of vortox olemnt  positivo 
f orwazld, f eo t 

chold at spanwiee etation q, ?Got 

density of air, elu@;e per cubic f o o t  

sec t ion l i f t  coeff ic ient  

vorticity, f o o t  per  second 

circulotim, fEtet squared per second 

spanwiee center of preseure poaftion 

differential prossure between uppsr and l m r  surf‘acos 
of wfng, poun9e per square f o o t  

s t a t i c  pressure, pmnds por squaro f o o t  

froe-stroam s t a t i c  PTOESUW, pounds por squero f o o t  



P 



sweep aaglo of loading edge, positive. f o r  sx@opba.ck, 
dO@?OOS 

Y' dimensionlees coord imte  o f  contml  point  d a g  

Tt dimensionless  coordinate of vortex element d o n g  

l i n e  p a ; r a ~ e l  t o  0.25~ l ine  (y/co COB A) 

0.250~ line (F/co coa A) 

BE, BL perpendiculm  Ciatance from 0 . 2 5 ~  Ilne to  control  point 
divided  by  co 

AR, AL distance along 0 . 2 5 ~  l ine fram center  section t o  base 
of peqendlculaz to control  point divided by co 

C 

Symbols Pertaining t o  the Weieainger Method 

ar , local   aspect  ratio (b/c) 
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m 

M 

n 

nmber of s ta t fons  at whkh f,,p and L~(v,p) 
is to bs determkecl 

denotes at which of m p o i n t s  speciffc circulation 
ordin%% occurs 

cv 

c 
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The flue wing5 t o  which the method8 have been applied are 
descr!.bed i n  refemnze 4. Briefly, they were produced by sweepfng 
the wing panels f rm an ex.Latfng airplane t o  f i v e  angles z? sweep. 
Each wfng then consisted of a center section, tho two main ganele, 
and tbe two t ip   sec t ione .  The a. i - r foi l  sections of tho root and 
t i p  were genera.ted by dh-ec t  extension of the sur face  of the  ganole. 
The gemetric chas*a,cterist~cs of the wings are  a.s fol lows:  

.'A 1 AR 
t effectzvg) S 

-45.2O I 0.376 

4.46 288.4 f t 2  
4.47 201.8 f t 2  

335.5 f t 2  2.99 
4.45 1 232.3 f t 2  

1 46.4' 3.45 

In  all applica.t iam presented herein it was amumed that a l l  
section lift-curve slopes were 0.103 par degree, the average value 
of this parY.aet.er f o r  the soctione a t  the onde of t h e  mewapt wing 
panel.  Actually, the local section  lope varied from root t o  t ip ;  
however, because o f  the nature of the  section8 ganarated by 
extending the w%ng p.mele, exac t  values of this function could n o t  
be determined. Correction8 t o  tho theorot ical  m e t h o b  t o  account 
f o r  such a v a r k t i o n  mro omitted from tho  computations, although 
tho   e f fec ts  of mch an mission a r e  dlscussed later. 

The loading on a wing can be sepcrated  into the basic l o d i n g  
( t h a t  oxistfng at  ZOTO ovcr"1 lift) wbich is a function of twist, 
cambor, flap deflection, and plan form; and a d d i t i o n d  loading, 
which is a function of plan form md angle of a t tack .  For purposos 
of  andys f s  i n  this  raport ,   e t tont ion has boon diroctod solely 
towards tho additional loading. The wings expsrimentdly  investigated 

2To a ~ r o o  with tho  dofinition of sweop used i n  tho theorotical  
methods of qlcn l o d i n g  prediction, swoop has bcon  rof o r r o d  t o  
the swoep of tho; l lne joining, the  c_uartor-chord points at root 
end t i p .  In r e f e r a c e  4 tho smep m.8 definod arrowha.t 
d i f f  ercntly . 
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1. The fluid is incmpmesible . 

3.  The circulation fa such met, after ~t-k-Joukowski,  the 
stegnation point OCCUTB at t h o  trailing edge of t h e  r t l r f o i 5 .  

4. The wing ie roproecnteb by 8 thfn vortex sheet in  tho chord 
plana h u i n g  c. plan f o m  identicol to the wing plan forn. 
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Tho problm of obtaining tho loading, or dis t r ibu t ion  of Ap, 
over  tho wing is thus rosolvod  into that of obtaining tho strength 
of vo r t i c i ty  y within .tho p h  form. The control  condition which 
is onforcod t o  obtain t h o  distribl;ztion of 7 i a  thct no f l o w  c m  
occur through t he  vor t i c i ty  sheet, 01- in other wrds, that t ho  
domwash produced by t h o  vor t i c i ty  is proportional t o  tho slope of 
the sheet at any point wlthin i t a  limits. The dobmfmtion of 7 
would bo exact if its d is t r ibu t ion  were considerad continuGus and 
if the foregoing cdndition m r o  enf'orcod at M inf'inito numbor of 
points. Such en exact  determination is h p r a c t i c a l ;  consoquontly, 
simplifying approximtiona m u s t  bo introduced. l%o simplif icat iom 
generally used a m  tho80 cf (1) concentra-ting o r  ros t r fc t ing  tho  
continuous vor t i c i ty  chordx3ao and/or spanwfss i n  o&r t o  mako 
the dotarmination of its dis t r ibu t ion  menablo to mthomatfcal 
tmatmant; and (2)  rapmaenting the dis t r ibu t ion  of vor t i c i ty  o r  
of c i rculat ion by a rnaLkematical oxproasion,  usually a. scrioa,  
containing a f in i ta  numbor of wllmown coeff ic ients  whcro an inf ini to  
numbor are generally  required for oxactnoas; and (3)  l imiting tho 
numbor of control points a t  which t he  cmdi t ion  of no flow through 
tha nhoot l a  aa t i s f  iod. Tho differences in tho m-ious  mothods 
dovolopod for predicting the distribution of vor t i c i ty  ariso, 
thoroforo, frwn (1) the manner of concentrating o r  rostr ic t ine;  tho 
vort ic i ty;  (2) tho diffomnces in tho form of thc matIicrmaticnJ. 
oxpmseione u o d  t o  doacribo tbo vor t i c i ty  dfstributfons; and 
(3) t h o  chofco i n  numbor and locat ion of' wlo control  points end tho 
pmcise mathomatical procoduro uaod t o  obtain a solution. 



1. Concontrating the voT.ticity  both chordwise and spand-so 
lnto a sgs.tO111 of 8k f f n i b  horeeehoe vort ices   ( f ig .  l(a) ) 

3.  Summing et a number  of control poin t8  m tho wlng tho  
downmsh  produced by all the vorticos of tho subject 
system and oomputod by mem of tha B i o H a v a r t  h w  

4. Equating tho downxsh -0 .  thus detomined to tho slope 
of the plat0 a t  those points thor-aby forming  oquatione 
involving tho urdmam c mff ic ienta  

a 

The Mutterper1 Method 

Mutterperl  considared only spanwtse dis t r ibu t icn  of voyticity.  
In such an agpproach the chordwise d is t r ibu t ion  of vor t fc f ty  i e  
concentrated  into the circl&tion of a l- t ing  l ine.  (See fig. ~ ( b )  .) 
The dis t r ibu t ion  of this circulat ion &long the   l ine  is than repre" 
aented by the  Fourier series 

r = ~ S C V C ,  sin CL f a n + l  s i n  (%+l) cp (2) 

n=O 

The unknowns to be evalmted to obtain "the a s t r i b u t i o n  of r 
are  the  coefficients a=+l. The damwash produced a t  points cn 
the wing by t he  EYting line and its t r a i l i n g  vcrbx system caa be 
expressed in  te rne  of these u n k n m a  by a2plication of the  BiotcGavart 
law to t h i s  equation. (See appendix B.) Equating the expression 
f o r  downwash angle to the elopes of the m a e n  camber l i n e s  at these 
points prcducas a e e t  of equatione wl?.ich ccntain the unkna~ns am+l; 
simultanacsus solution of these equatione evaluates the  coefficients,  
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The Waisslnger Method 

From extenelms of the 14ulthop procedwes, Weimimer deyeloped 
t w o  methods of obtainiog span loading, one ba.eed on l s t i n g  surface 
concepts,  the otk,er on l i f t l n g   l i n e .  The l i f t i n g  ourface method, however, 
amounted t o   l i t t l e  more than a substi tution of the   theore tka l  
additlcnal chordwise loading, repzesented 5y 7 = cms tan t  X V cot  ,$, 
f o r  tho ccincentr-ated load  of t h e  lif t i n e l i n e  method. According 
to Weissinger the  surface method proved t o  be ccneidorably longer, 
and gave results with an a c u r a c y  only s l i gh t ly  superior to those aP 
the   l ine  method. For this reaeon, on ly  the l a . t ; t ~ t .  LEY -described 
heroin. 

As i n  the Muttes-prl method, t h e  continuous chorCwise U B t r i -  
bution of vor t ic i ty  is concentra.tod  into the clrculat ion of e. 
l i f t i n g   l i n e .  (See f igu re   r ( c )  .)' TIIO d t s t r i b u t ~ o n  of -this circula- 
tion l e  then  spmii ied by 

n=l Y1=l 

The circulat ion r(F) 38 represented nondimensionally a.s G(cp) 
in this expression and the unkxnms t o  be eveluetad are  k, tho 
circulations a t  8pecli"ied  1oca.tione along the l i n o .  The downwa.eh 
produced at ;?olnts within the plan f o m  by the lifting l ino and 
its tza i l fng  vortex eystan  can bo oxp,-essad i n  tam of thsso 
unl~owns t h r o m  application of the SiotcSa,va;-t l a w  t o  equation (3 ) .  
(See appendix C . ) E q u a t h g  t h e  expressions foi- d ~ ~ ~ ~ w a a h  m e  SO 

obtafned t o  the slopee of t h e  m e a n  camber lines at  these points 
xsults i n  a s e t  of eqmt2om with unknowns h. Simultzmoue 
solution of these eqmtions evaluates the unknowns. 

Pressure data were teken a t  a turmel speed of 90 milee per 
hour which uorreqmnds t o  a 3eynolds number of approximately 
9,000,000. D a t a  wc-8 taken over an angle-sf-ttack range -3O t o  
9'. Plots  of t he  chordwise d i s t r i h t i o n  of pressure coeff ic ient  
P = ( ~ , > / q  at several epmwise atattons were barn and integmted 
t o  obtain the l oca l  llflt at  these stations. These value0 of loca l  
l i f t  w e m  then plot ted against angle of atmk, ana the resulting 
l o c a l  1ift-cu-z-e 'slopes were used to obtain the C ~ W B  of the EP~IIWI~~ . 



distribution of addition-zl load and of a d d l t i m l  lift coefficient 
shown herein. The maximum arrar in any l oca l  l i f  t-curve slope as 
t h e  resul t  of scatter, etc., ie sstfnated t o  be 0.oO"c per d e m o .  
Such m orrar would prorluco a wziation of the distribution  curv08 
of about one-half to ane-third the magnitude of t h e  discrepancy 
bekwecn the theoraticd1,v c m p t e d  and t h o  oxprimentallg obtainod 
CUr886. 
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takes frnn 20 to 28 hawe,  the greater p e r t  of the  t lme befng 
consmed in t he  Simpscn rule integratia af the  factwa F,: to F,'. 
The Weissinger metbod using m = M = 'I, takes o d y  2-$ to 3 hosr6,  
in which there is no phase. t ha t  cmstm~8a an. outstandhg amountv af 
time. \..- .* .- ?:'.,+.. cm - Z.rF..i -5 t . a r .  

It has been s ta ted  previously that t he  sect ion l i f k u r v o  
slope cz, of all sectims on  all ffve wings was assmed t; be 
0.1030 per depee.  Tile tk~ickness v&.riations lrcm root t o  -Up.. 
however, indicate that variations in cza pr3bebl.y exist f o r  each 
wing. Unfortunately, the d f s t o r t i o n s  of t h o  sectfms result ing 
from the  manner in which t he  w i n g s  were constructed preclude an 
exact  determination of what tbe variation  might be f o r  all but the 
unswept wing. For this reason, t h e  readily applicable correction 
to theory (see apgendbes) f o r  a. variatian In czaL wae n o t  
included in the compu-kitlons. While thia  correction would 
account  at least in p a r t  f o r  the aforementioned discl-epancies 
between  theoretical  and experimental loading distributions, it 
should not alter t h e  relative evaluation of the three methods. 

In comiderfng t he  th.ree methods it should be noted thet two 
of them, those of Weissinger a d  Mutterperl, have identical aero- 
dynamic approache8 and differ. only in the  mathomtical procedure. 
It would be expect&, therefore, if no cmprmiee wem lnade In t h e  
mathematical accuracy ( 2  .e,, if a large number cf terms -1-e used 
in the Serks)* ,  idsntfcal msultS would be obkineb.  Further, if 
~limilar 1imib.tZas were .Impressed upon the tm methods it m f g h t  
w e U  be assumed that msults of cmpa-rabio accuracy would be 
obtained. The failure of the Mutterpsrl method t3 p r e d i c t  
acceptable loadings on the Bwep-b-forward w h g e  is inexplicable on 
these grounds and, a8 G result, must be a t t r i b u t a d  to an inconaisb- 
ency  Introduced in the mathematical development. An additional 
advantage of the Wefssfnger method ie K9at it lend3 itself b ~e 
pretabulation of a nmbor of constants  which a r e  applicable to the 
solution for any plan fo-m. It i e  because of th i s  that the Weissinger 
method proved less the consuming than that of Mutto-rperl wilich 
cannot be handled 5n th ie  mmnm. In genoral, then, It 16 apparont 
that the Weissinger method offers several advadz.gea over the 
Mutterper1 method, which, howevor, atam entirely f rm t he  mathematical 
phase of t h e  eolutfon. Insofar a8 tbe  aerodynamic  concepts are 
concerned neither method should be expected  to be suporior. 



The Falkncr method offer3 a dofinite aerodymmlc acImt8ge in  
that tho wing is repreecntad by a l i f t i n g  surface ra ther   than a 
lfftlng line. From a comidaration of on lg  the spazlwiso dlstribu- 
t i on  of loacUng, tho time rcquireC t o  use +;he Falknor method appeara 
excessive whon the very minor impovement i n  accuracg 18 recognized. 
Howemr, If surface  loading or  chorawise loadhg wero desired, the 
method would undoubtodly ehaw -ked supericri ty.  The rakt iva ly  
long period cf time  roquimd to obtain a solution bp this mtliod 
is in   g roa t  measure a r a su l t  of the large nurmber of purely mechanical 
functions inherent i n   t h 6  method. It can be expoctod th&t such 
processes  are amenable t o  handiing br mechanical means if aufficfent 
me is to bo made of tho moth& t o  warrant their construction. One 
such aid of re la t iva ly  simple form has been applied i n   o t h e r  a m -  
loeding  cmputations wing the Fdlkner nethod and reaul ted  in   cut t ing 
the computing t2ne by 30 percent w i t h  no scricua loa3 in cccxracp. 1% 
consisted of conetrdcting a laPge-scale  contour char t  of the down- 
wash f i e l d  around & horssshoe vortex and  using  this  in  conjunction 
w i t h  an appropriately  scalod drawing of the w i n g  t o  read  directly 
tho dawnwash a t  t h e  verious control  paints. 

A fur ther  advantage af tho Fzllmer method over the liftin&-line 
methods can be  aeen i n  the increased f l e x i b i l i t y  resulting f:xm the 
system of ffnite vorticos which pernit application of thisnethod t o  
a variety of plan fo -m beyond the scope of the other methods the  
l i f t i n g   l i n o  p t t e rn  an& c o n t r o l - p i n t   p s i t i o m  of which are 
fa i r ly   r ig id ly   spec i f ied .  In this ragaxd, Falkner has successl1llly 
agplied the m e t h o d  t o  a pterodectyl w i n g  (reference 5 )  end t o  a 
w i n g  w i t h  a parabol ic   0 .25~ line (reference 6). It should be 
~eIn!3niberGd, however, that aho1A.d the plan form be 09 such a nature 
a s  to   require  a modification of tho  vortox l a t t i ce ,   t ho  work 
involvad w i l l  be conelderably increased. 

From the results of the subject  Investigation tho follming 
conclusions have been dram: 

1. Where an over-all stuQ OZ the ef fec ts  a? sveop and plan 
form on sptn loading, 1ift”Cw-i-e slope, etc., l e  deeirad and 
whore good accuracy is desired f o r  m5nimtm e f f o r t ,  the Weissingar 
method is most useful. 
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2. Where a datafled study of a epoclfic wing is desired and 
utmost accuracy is important even at the oxpnso  of considerable 
computing effort, the F a m a r  method should bo u - o d .  

3. The Muttorperl method offered no advantagoe over the othor 
mthode either fn t o m  of accuracy or facility and honco ia not 
xccunmondod for UBO. 

Amos Aoronautllcal Laboratory, 
National Advisory Comnitstoc for Aeronautics, 

Moff et t Field, Calif. 

Nicholas E. Van Dorn, 
Mcchmical En&lnoor. 



XACA RM No. A7C31 

W i n g  9a~esleters 

31.0 14.66 ,442 
46,4 1 3.45 .418 
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" a). FALKNER 

c 

b). MUTTERPERL 

FIGURE 1 .  - THE MANNER OF CONCENTRATING THE 
VORTICITY FOR Tt-iE METHODS OF FALKNER, 
MUTTERPERL AND WEISSINGER. 
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"0 2 .4 15 B 10 
SPANWISE STATK)N, tl 

a,)-45.2" SWEEP 
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0 2 A 6 B LO 
SPNWISE STATION, 

e) 0.9' SWEEP 

Fig. 3 

"0 2 A 6 B LO 
SPANWISE STATION, r( 

b.)-29.So SWEEP 

d 
s u 

-0 2 4 .6 8 
SPANWISE: S~ATIOF.,. ' 1  

dJ31.0' SWEEP 

FIGURE 3.- MSTRWTW4 OF LOCAL LIFT COEFFICEt4T, 'Z/cL, ALONG THE SEMISPAN. 



so1ection of ths vortex Pat torn 

Dotormimtim of Cfrcu la t ion  of Motwork Vorticca 



The chordwise cfincentzation of the load is determinod by the 
condition that, a t  potnte located miCmy betwee? the loeda (at 
one-gwter ,  one-hale, pad tb-ee-qmter chord}, t h e  downmeh 
produced by the f 3ur chordwiss load8 rv be the 8ame as would be 
produced by the cmtinuous chordwise loading tn two-dimensiorlal 
f low, and t he  limitation that t h e  ~ u m  of t h e  isolated loads be 
equal t o  the integral of the cor- t inum lo&. 

or, since only chordwise lzeding is befrg conciderec, n31 f ac to re  
which are not a function of the chordwise variable 8 can be put 
into e. constsat  A where 

n=O 
L 

7 = p co t  Q 

Then it can be sbown th5t if W,e f low J.s consJ&:-ed two d>-meneional 
.toe downmuh angle at arty pint dmg t h e  chord ia 

and. 



k similar  eolution w-hon 

where 

gives "&e circulation-lncroment distributicn mtcb is aquivalent 
to t h e  continuous losding oqrcasod by the aeconci chordwiss tkxm 
of equation (I), cnd 80 f o r t h .  
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The circulation'of a specific  vortex nay then be expressed by 

or if 

Since the c i x u l a t f o n  of apecific horseshoe vortices is now 
being  considered, the c i rcu la t ion  no longer v a r i e s  continuously 
a l o n g  t he  apan but remains conatant  throughout the length of the 
bounded lines. Thfs is e q u i v s l e ~ t  to the asemption t h a t  t l te 

of the boundek l b e s  of t h e  network vcrticeer. The continuoua 
varfable 511 of equation (1) or equation (AlO) is theref ore replaced 
in  a new equation by spec i f ic  values p of which indicate the 
midpoint8 of theee l ines .  Thie new equation which expresses the 
c i rcu la t ion  of any network vortex is then 

COZlti.nUOUS loading 18 stepped &t iXIblTd8 8 q l d  t o  'bh8 length 

3 
The value0 of @,A W,B and h ,c  presented bj; F d h e r  in 
reference 1 'were found to be in e r r o r .  Under the  direction 
of Mr. A r t h u r  Jones these valuee were recomputed at Amee, 
and the value8 80 obtained a m  presented in table Al. 

* 
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or for a symmstricw loaded wing 

21 

Salection of Control Points 

Since one equation i s  f m d  at  each xotnt ELIXI since there 
should be the, sane number of equations e8 'them are unlmowns, the 
total number of points  selected is detemained by the t o t a l  numbr of 
unknowns retainsd i n  the eerie8 equation. E'urther, the apnwlse and 
chordwise d is t r ibu t ion  of control  points must correspond t o  the 
number of spanwise and chordwise terns ratained i n  the series. The 
locations of the points  chordwrise and spamdse are l imited t o  posi- 
tiom midway betwaen or on the center line of the vortices. A s i d a  
ficm th3se limiktims, the exact choice of location rmains a matter 
of eqer ience .  Falkner found that for a calculation of s-trical 
loading the amagemsnt presented in  f igum I (a) reeulted In good 
accuracy for wiws with swap. This arrangerilant. has ban use& i n  
all the calculations presented herein. 
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Determination of the Downwash 

The domwaah  produced by a simple horae&- vortex of c l r c u b -  
tion I' iB expresaad by (reference 8) 

where 

or fo r  a e,vmmstrical wing 

Tha coordinates x-)@, s)c, and conseqwntlg the factor F can be 
determined readily from wing gecanstry. In thie regard, plots of tho 
function F V B ~ S U B  from 0 to 20 have &en prepared a t  valwe 
of y* = 0, 2, 4, 6 ... 40; however because of thair size thaeu 



. 

charts &e such ham not been included in the report, but the ‘tabular 
data necessary f o r  their conetruction are @van in  table AIII. In 
addition,  exmination of ( U h )  TsiU reveal thst if s# ie constant 

F ( - f l )  = Fl -I- F2.- F (e) 
w h e r e  F1 + F2 is a function of y* only 

21 + F2 2 
y*+l 
”- 
- 

For this reason table 4311 contains onl? posftivs valuae of e, 
and tihe function F1 + F2 is presented in  tab le  AIV. 

SummEttion of the downwash at g,ny control point now r a s u l t s  in 
an expression containing the unh-~avns LL &.their n w r i c a l  
coafficients which are prqducts of the t d u l a t e d  valuas p n s ,  
Gv A, Gv , Gv, , and F. In this regard it should be noted that i n  
thd S d ? i o n s  For a syrmmatrical (about root  chord) wing, the do- 
uaerh factors l? Tor symietrically loceted vortices may be added 
togother p r i o r  t o  the multlplication of thew f3ctora by tha circula- 
tions of the ~ortfces,  since in this i n s t a c e  %la3 circulation of such 
a pair of vortices will be identical .  

Solution for Additional Loading 
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Solution for Baeic Loading 

The deb-rmination of the basic  loading on a wlw wfth crmber 
and tw ls t  can be sccmplished in sever-d ways. The simplest of theso 
is t o  calculate t h o  total loading,  .basic plus additionel, at  8 m e  
f i n i t e  l i f t  coeff ic ient  and t h e n  to   subt rac t  frm t h i e  the additlomil. 
loading a8 calculated  for  that lift coefficient.  A solution for the 
t o t a l  l o d i n g  on a camberod and twisted. wing is identicd. with that 
of a flat-plate wing up t o  the format ion  of the s i m u l ~ o O u 8  cqua.tion8. 
For  tho fla-la-b wing a l l  local geometric m@oe of c t tack  mro 
idont ical  t o  the .trfng g o m t r i c  m g l e  of attack; in thi0 in sknco  
loca l  geometrical angles of a t t s ck  a m  i n  addition a functlon of 
the camber md t w i s t .  

If the midwing eectfon of the wing 50 choson 3 s  a reference cxd 
se t  a r b i t r a r i l y  at  s m o  Etngle %, than t h e   l o c d   g e m o t r i c d .  
angles of a t tack at the various  control  points m o  known oxzctly; 
hmvGr,  tho  angle a of tho raforonce from tho zoro lift mgle of 
the w i n g  is not  known. To obtain a solut ioc undor thoso circumstzncoe 
the values tan alocal md tan m substi tuted f o r  WPJ 2nd 
tan a, r e spc t ive ly ,  in the downwash oxpmseione, md s solution fcrr 
the coofficients k , n  is obtained in which, h m v e r ,  thoso cooffi- 
c ien ts  will be in e r r o r  by t h e  fac tor  tan ccjtan c&8. If thcso COBffi- 
cionta a d  t ho  f a c t o r  tan a m a  than introduced i n t o  tho oxproasion 
for l i f t  cooff  iciont. 

the l i f t  cooff i c i o n t   f o r  tho angle of a t tzck  a will bo obtainoh, 
sinco .tho error introduced by using will bo nogatod by tho orror  
in tho coofficionts In other. words, the rosult is thc s m o  
0.8 if tho correct vduos of ' am,n & tan U, had boen ineort;od Into 
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. 

, 

equation (A23). Similarly introduction of tan Q and the  incorrect 
values of &m,n i n to  tha following: 

IM4) 
will result in the value8 of the ordinates of the t o w  loading 
CUT- for tan a Now if a solut ion is  effected for the addttional 
loading, as previously  described, and the value of the llft-curve elopo 
tU&/dcc thus  obkined fram eguatian (=9> is divcded into  the vdde 
of Q, obtainad from equation (A23), the correct due of the wing 
Elngle of attack tan  a w i l l  result. If thie value and the   coef f -  
oients  &m of the additional loading are then substituted Into 
expression (E&), the ordimtes of the additfonal loading cume w i l l  
be obtained.  Subtraction of these from the ordinates of the total 

lading clirve. 

rn 

l o a d i x  C m  Wfll = S f i t  in the O r d i m h a  Of tb  desired basic 

Correction for Section Lif-e Slope 

IIhrough the @nerd developmant of the method all flection lifL 
ourve slopes were aseumad t o  be t h e  theore t ica l  25r per radians 
(0.1096 per deg). AS this a s a u q t i o n  is not d i d  for all sections 
the final e q r e e e i o n  for vor t i c i ty  will be fn error unlees a corn-  
tion is applied. If the Bection lift-curve s l o p  is  the 882118 at dl 
seotions of the wing, the error may be correc-d by simply multi-- 
2% each  coefficient * a ,  by the ratio of ac tua l   sec t ion  lift- 

sec t ion   l i f t -curve  slope can be accommdated almost e8 easfly; 
howvar, i n  this instance the correction must be introduced i n to  
eqmt ion  (1) a s  a function of tha spanwlse variable 3. 

cwve slope to theomti&  Wction lift-curve slope. A vwiw 

The following instruct ions  apply  to  unyawed strafght tapered 
swept wings without camber or twist .  

The coordinates x*' and y*' r e l a t ing  all vort ices  and 
control   points   to   the center section l e a d S n g  edge of the wing are 
calculated on form A ( 1 )  w f n g  tha r s l a t ions  
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f o r  the  vortices, m d  

for the control points. Since 
the same fo r  similarly locatad 
values of p f o r  the l e f t  wing will be the a8 thoea for the 
r igh t  wing, dthough of opposj.te si-. For t h i s  reaaon t h e m  vallm8 
only need be computed for poeitive values of or p. 

The val l~e~l  of x++ end y+ r s l a t ing  a control  point to oach of 
the  vortices are obtained by subtract5ng the values of x*' and 
3*' of the vort icss  fram  thoee of the control  point, column 9 or 3, 
f o r m  A ( 1 )  from a v d u e  in c o l m  18 or 12, form A(1),  respectively; 
x* and p era then t a b 1 h t . d  OR o. form A ( 2 ) ,  using e. eepsrnte 
farm f o r  each contrnl point. It ahould be notad thct since the 
coordimtes of t h e  vorticae at  p = 0.9625 a m  based upon a unit 
length yv one"qrlwter n o d  size, e and z* f o r  thaee 
rortic3.s m a  four times the no rml ly  calculated v d u o s .  k n t l y ,  by 
vir tue of eyirrmctry of plan form, the coor&inates c m  be tdmla ted  
80 that two v e . 1 ~ ~ : ~  yL* a yR* e ~ s t  Tor amry vs lm of x*. 

Thae coord tu tae  are now used to enter c h t s  of the damWafah 
function F at3 prepemd frm tho V ~ W S  in t eb lo  AIII. The valuee 
obtainod for tho vortices at ~1 = 0.9625 ahould,bo multiplied by 
f o w .  Boceuse of symmtry of l a d i n g ,  TR and FL can ba and rn 
added towthar .  . . . . . -. . . 

Thc simultanaous o q u t i o n s  set up i n  tab* form i n  form A(3)  
e m  now obtained as f o l l o w ~ :  Cansibring the first aquatian o r  
column I, tha second numbor tha numjrical  ccefficisnt of co 0, 
2s obtaimd by multiplying the v.zlue8 of FB + FL in c o l m  .f, 
for12 A ( 2 )  as dehrmimd f o r  control point 1 by the  vdu3s listed 
under a i n  tablo AI1 and s-ng the products.  Simikrly, 
tho  t h i rd  number in column 1, tho nulwrical c m f f i c i s n t  of alto, 
is obtaimd by multiplying tha values in  column 7 by the vnluae 

o t o  



c 

.. 

or 

In lih mnmr tha consttnta for the other aqmtions are elso 0.0250. 

? 
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FORM A:- COMPUTING 
(U n CI e rscore d 

FORM FOR 
numbers are 

NATIONAL ADVISORY 
COWITTEE HT A#QIIAUTIcs 

FACKNER'S METHOD 

sample calculotrons) 



. 

FORM A:- CONCLUDED 
NATIONAL ADVISORY 

COMMITTEE FOR AERONAUTICS 

Z 
0 



. 

. 

0.125 0.27337 

-. 072 82 .a902 .od_ 056 875 

-. 03823 .07538 ,06941 625 

w03823 .07598 .11680 0 375 

C. 04 9C2 0. C72 82 

c 

. 
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. 

- 
P 

- 
0 

m 1  

m 3  
m2 

m 6  
.4 

m 6  
m 7  
.8 
.9 

-9626 
0 

m 1  
e2 

.4 
m3 

06 
m6 
m7 
-8 
.9 

g626 
0 

m 2  
.1 

-3 
04 
m 6  
-6 
m7 
m8 

e9626 
m9 

0 
m 1  
m 2  
-3 

-6 
04 

m 6  
m7 
.8 
08 

9626 - 

rn for 

a0,o 

0.27337 
027200 
026785 
m28077 
m260SC 
025674 
021870 
m19621 
.l64& 
a11916 
07417 

m11680 
011622 
m11444 
ell142 
.lo708 
m10115 
mm3U 
008W1 

.OB081 
m 0 7 o o a  

m06947 
005169 

008912 

m06627 
-46567 
m08016 
006668 

a04168 
m04981 

m 0 3 0 2 8  
001886 

mOQ016 
m 0 4 0 5 6  

003954 
m03850 
-03699 
003495 
-05229 
. a882  
e02422 
-01769 
mol096 

m o S ~ 0 7  

m o o e l f  
0 

001072 
.as48 
m o L 0 m  
ma918 
007875 
009665 
-101.97 
.ma5 
.08670 

0 
moo116 
a 0 0 4 0 8  
01oos 
01712 

-02629 
moss64 
.MOB7 
m a 4 8 6  

r04124 
m a g s 4  
.00089 

0 

-00272 

.01018 
mom97 

-016M 
ma001 
mms1 
.a688 
e02455 
0174 8 

0 
m o O o L 0  
moo158 
moa47 
m o o 5 9 2  
mm74 

-01412 
.01162 

001660 
.01426 
001014 

NATIONAL ADVISORY 
COMMITTEE Fo9 AERONAUTICS 
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TABU2 AI1I.- DOWMJASH FACTOR F IN 'TEE FIEID OF A HORSEHOE VORTEX 
[At posit ivo values of x#. only]  1 

0' 2,00000 
.l 1.goo20 
.2 1 .I30200 
.3 1.70647 
.4  1.61484 
.? 1.32788 
.6 l.kh603 

.8 1.29844 * 

.9 1.232% 

.7  1.36954 

I. o 1,17158 
lL.5 092963 
2 .o 76393 
2.5 .64394 
3.0 e 5 5 3 4 9  

4  .43845 
6 030574 
8 ,23444 

PO ,19012 
15 .a2889 
20 .Og750 

" a 
- ? 03175 
-e03135 
-* 03093 
-=030T3 -. 03011 
-002973 
-.02934 - .02893 
-.02854 - ,02814 -. 02774 -. 0291 -. 02334 -. 02214 -. 02045 
-.01739 -. 01255 -. 00918 
-.00368 
-.00223 

-. 00685 

c-  

c 

F 
10 

-.02020 
"01999 - .01980 
- 0  0x959 -. 01938 - ,01919 - ,01897 - , 01878 - .01857 -. 01838 - ,01817 - . 01n8 
- ,01620 
-, 01326 

-. 01261) -. 00974 -. 03752 
-000587 -. 00335 
-.002u 

-.01S35 

14 

-. 01025 
- ,01018 -. 01011 -. 01003 -. 00996 
-.oog88 
- .oog81 -. 00974 - .00967 -. 00939 
- ,00952 -. 00915 -. 00880 -. 00844 -. omlo - ,00743 - ,00620 -. 00515 
- ,00274 -. ma85 

-. 00428 

" 

w 
N 



T A B U  AII1.- Conoluded. 

f l  - 
0 
.l 
.2 
.3 
.4 
05  
06 
.7 
.8 
* 9  

1.0 
l o 5  
2.0 
2.5 
3.0 

4 
6 
8 
10 
1s 
2 0  - 

-000346 -0 002 95 
- e  00346 - e  002 94 
- a  00343 - 0  002 93 
- 0  00342 -. 00291 
- 0  00340 -. 002 90 
-000538 -000289 
-000337 -000288 
- 0  00336 - 0  00287 
- e  00334 - e  002 86 
m e  00333 -* 00286 

~ -e00325 -e00279 
~ -000318 -000273 

- 0  00311 - e  00268 
~ *o00304: -000263 
I -.00291  -.00251 

I-. 00263 

-m 00230 
- a  00237  00209 
-o00214 -e00190 
-bo0164  -o00148 
"00126 re00116 

28 

O(3256 -. 002 55 
-0002M 
- 0  002 53 
g o 0 0 2  52 
- 0  002 51  
-moo250 
- m  00249 
me00248 
n o  00247 
1.00246 
- 0  00242 
- 0  002 37 
-e00233 
me00228 
-000219 -. 002 01 
n o  001 86 
- 0  00170 
me 00134 
n o  00106 

F 
"r----- 

30 ' 32 

- 0  00222 -. 00196 
-000221 
-a00220 

- e  00195 
-e00195 

00219 -e00194 
-,00218 -.00193 
ma00218 -000192 
-000217 -. 00192 
-.00217 

-e00190 -moo215 
-e00190 -000215 
-moo190 m.00216 
-e00191 

-300186 .roo0211 
002 08 m e  00183 

34 

-e00173 
- a  00172 
- e  00272 
-e00171 
-000171 
-000170 
- e  00170 
m.  00170 -. 00169 
-e00168 
00168 

-m00166 
3.00163 
-e00161 
cr00158 
-i 00153 
-000143 
- 0  00133 
- e  00124 
- 0  001 03 
- 0  OC086 

1 

36 38 1 40 

0.00154 

-. 00138 me00154 
-a00125 -o00139 -so0154 
-moo125 -e00139 

-000122 -moo136 -o00151 
eo00123 me00137 -a00162 
-000123 no00137 m.00162 
-moo123 -000137 -no0153 
-moo124 - 0  00138 -000153 
- 0  00124 

00151 n o  00136 -000122 
-e00150 -a00136 -.00122 
-000150 -e00135 -moo122 
~o00148 -moo134 -000120 
m e  00146 

- e  0012 8 - e  00142 
-e00117 m e  00130 er0014.4. 
- a  00118 -,00132 

-00006Y -a00074 lr00079 
-o00081 -000088 -000095 
-000096 -e00103 - o O O 1 1 3  
-.00101. -.00110 -.00121 
-e  00106 - e  00117 m e  0012 9 
-.00113 -moo124  *oOO137 

001 15 

W 
W 



4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

y* 

24 

2 6  

28  

30 

32 

34 

13 

37 

61 

93 

117 

141 
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A l i f t i n g  line usad t o  represent ;I w i n g  l a  plsced L n  a posi- 
tion corrasponding t o  tha quartor-chord lilm of the wing. The 
dLstribution of ciroulaXm d o n g  the lifting line is expmssed by 
eguatfon (2). 

Deternilz-.,tion of Doknwash 
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Solution for Additional Loading 



c 

Solu t ion  f o r  BESIC Loadin& 

In addition, if the values of am+1 ad. sin as are subetituted 
i n t o  the f ollowlng, an equatzon f 02% the ,crdinates of tl.le curve of 
t o t a l  loading on tho wing at  a results. 



These instructlona spply d y  to v ! w d  w i n g 8  devoij. of cember 
and/or t d a  t . 

If the loca l  angle of a t tack sin a is introducsd into 
expressicn (Sl) in  placo of the dmwaeh r e t i o  w/V, t h i s  expres- 
sion can bo m i t t o n  

1 = $, (S.n+l) a*-,+= (Fl +F2 -@&Fa q4 F4 I +F,F, +FeFs * +F7F7 +FaFs } (B8) 

Wk16re 
n=O 

. 

. 



Computing f o r n  B(1) is used to calculate all factors which rewin 
constant t l xougbout  the smrmatfons for one c m t r o l  point: Pa, 
BR, AL, BL, s * , C, F, , F4, F,, F, , F7, F8. The computstbn f o m  
f Gr those factors ,  which vary with n only tbroughou'k the eumations 
f o r  any one control Toint, is presented in form B ( 2 ) .  C q u t i n g  f o m  
B(3) is used t o  apply SfmpsonIs rule t o  the integration of F3 t ,  *, 
F5 * , F6 I ,  F7 end F, . The f a c t o r  &+x, xhich is independent of. 
wing 8hape end so can be applied to a l l  wings, W&B calculated frm the 
relation 

2 I "1.90944 

m e  results ~f the fntegration ars presented ~n form 3(3) .  
Form B(4) i s  the form in  which the c q o n e n t s  F are multiplied 
together md the r e su l t s  are summed producing fou r  equations, 
one f o r  each cont ro l  point. Lastly, the f o m  f o r  the sfmultaneous 
solution of -these equations (refsrence 9 )  and the resul t ing values 
of the unknowns are prassnted i n  form B ( 5 ) .  
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. 
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Control Pornt- 1 

41 

(33 

FORM B:- CONTINUED 



(53 

FORM B;- CONCLUDED 

. I 

Z 
0 



From l i f t i n g 4 i n e  theory the  equatlon of downwash at the one- 
quarter chord l 'he  of a s&-raight wlng' i f 3  glven by 

Weiasenger divldea this integral into two integrals ,  one of which 
is the s u e  O.B equation (Cl) which he eolves by Wthopp's method; 
and the other which lie solvee by a method analagous to that of 
Multhopp . 

The mathematical development' is as follows: 



44 

or 

where 

or 

Tho first -Integral of equation (C3) can bo written ne n function 
of cp. 

whore 



. 
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Equation (~6) holds exEtctly if f($ can be represenkd by . 

or, In additLon, 

Now ' 
. .  . .  
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The seriee l e  independent of Win@: geometry md may be put i n to  
a coefficient usable for ell wlngs . 

Then equation (CS) becomes 

Expression (C12) gfvea the  ,induced angle of attack on t h e  one- 
quater-chord line, a. t  the span etation V ,  in toms of tho eummation 
of n spanwise valuos of the dimensionless cfrculation. 

J 
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where 
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Dimensionlees circulation ia gtven by a 

or 

Letting 



n=l . .  Tl=l 
. . . . . . . . . ,  

or 



50 

whore 

The prime on the ammetion  fndicates that the term of n = v 
should not be added irlto tt .  

Equating t he  domwaeh to the local q l e  of a t tack of t h e  ple-to, 

Tho first  in tegra l  ia i&o downwa8h duo t o  tho W.zilfng vortex 
sheet a d  the last two integrals represent the voloci ty  induced 
by the lifting line. By Fntegratfng "ha l ae t  ttro irtograle by 
par t e  md roarranging i n t o  dimensionlose quantitiua, the procoding 
integrals may be put in a % o m  similar to equation (C3). 



1 I . I 



Equations f o r  determining G v  at spanwise point8 of 
2x = c00 - b m + l  
qua-tion (~20). 

for any wing ma.y theref ore be determined from 

S m i z i n g  the cmputations, the  relation equa.tiW dOWnwa.8h 
to the l o c a l  s lope  of the p la t e  at m points along t he  span giving 
m equations nfth m mikmwne, Gq is 

where 

"v = angle of attack  at span statfon V 

gv,v = gy,, for n = v 

axv =e= wina ED- 
cv chord at span statlon V 

L ~ ( , v , I L ) ,  f o r  a. stra.ight wing, see equation ( ~ 4 ) .  

L*( v , R ) ,  f o r  a swept wing, see equation (c26) . 



where again 

53 

n e  cmputatfone for a spmetr1caU.y l&ed wing map be st i l l .  
further reduced by an alteraticn to the preceding equatTcna and 
coefficients.  F w  e s,pmetz-ical ulng with o r  w i t h o u t  cember end 
twist, the dis t r ibu t ion  of local  angle of attack i0 ap.metricel 

then -. 

n goes frm 2 to 

p gcea from 1 to 

= a v  

.. 

m+l 
2 

m 

M 



where 

v = 1,2, 

Then 

Them coefficients may a l s o  be expressed as 
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M 
F 

-I 
M 

1y-l 

2 

. 



t 1 1 I ‘b  



and. 

'Ikon, m befora 



c 

Bar letting 
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then for t = 

Equation ((334) may be written 
MdS 

Q 



where 

61 

where, as before, 

q = coe - trsl 9 = COB = 
m + l '  M+1 
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In sunrmarg, for the aymmotrically loaded wing, 
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Limitation of the Series 

The  number of ca f f i c i en t s  G, required for accurecy depends 
upon h w  r ag id ly  the seriee equation (3) convsrges. Weissinger 
used. m equal to 7 ,  15, tmd 31 ir. hie investigation and ccncluded 
t h a t  the results obhined w3th m equal to T wez-e nearly a8 
accurate as those with rn eq- to 15 c)r 31. For this reason m 
equal t o  7, or f o w  coefliciants have been used i n  ell of tha appllca- 
tfons of this method presented herein The number of terne required 
i n  the i n t e r p o h t i m  functfon f, Ft m u s t  also be eehbl i shad.  Again 
Weissinger used M eqnel to 'j', 15, and 31 and found t h a t  raau l te  
with M equal to '? proved as satisfactory as those w f t h  b€ equal 
to 15 or 31. h s t l y ,  it ~hoUld be noted that equation (3) cannot 
satisfactorily approximate a c m e  containing dfacmt inui t ies ;  
homver, a nodification which Ki-11 enable it t o  do 80 has. been 
developed by 1.lfUl-t;kopp (reference 10) . 

Solution f o r  Additional Loadlng 
c 

Emlustion of this equation a t  the several stations v produces a 
s e t  of equations containing the unknm circulations which can 
tihen be solved .simultaneously t o  obtain the values of these 
circulation8 . . .  

Substi tution of the values so obtained into the folloving 
expressions, reaults in the values indtcated: 

n=l 
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and from referenco U. f o r  m = 7 

Solution for Beeic Loading 

Tho basic loading on a wing w i t h  camber and/or twist can ba 
detemined in a manner exac t l y  pmallel to thoae of Falknar and 
Mutterpwl.  An a r k i t r w y  angle cl, i8 selocted for tha r o o t  section 
and the values alocal, moasursd f rm It. If these values LW then 
substi-tutsd in eqwt ion  (C28}, end if' the resulting equations a m  
aolved simultaneously, values of Gn ~ d l l  bo obtained, which when 
insertod into t h e  following expression will give the corroct lift 
coeff ic ient  f o r  the wing at this  attitude. 

EiL 

n=l 

If these vdluos of G, are  also subetitutod Into tho f OUowing 
equation, a n  ex-ression for tho t o t a l  loading curve w i l l  r e s u l k .  



B when R = 2 

C w17sn n = 3 
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1 when v = 1. 

2 when v = 2 

3 when v = 3 

4 when v = 4 

then 
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1 0 -13.1406 
1 W 

2 4.6125 
3 1.8477 

2 0 -3.klhl. 
1 -4.6125 

3 3.0826 

3 o -1.6200 
1 -1.8477 
2 -3.0826 
3 0 

2 eo 
' 

4 0 -1.0000 
' 1 -1.0824 
2 -1.41.42 
3 -2.6130 
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